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EFFICIENT QUADRATURE FOR A BOUNDARY ELEMENT 

FLOW 
METHOD TO COMPUTE THREE-DIMENSIONAL STOKES 

WERNER VARNHORN 
Fachbereich Mathematik-lnformatik, Universirat G H  Paderhorn, D-4790 Paderborn, West Germany 

SUMMARY 
A collocation-type boundary element method based on bilinear B-splines is used for the numerical solution 
of the Stokes Dirichlet problem in bounded domains D c R 3 .  The computation of the influence matrix 
requires the numerical evaluation of weakly singular integrals on the domain boundary if the usual double- 
layer potential ansatz is chosen. Here mostly standard methods with disjoint grids for collocation and 
integration are used. We develop a special integration scheme based on triangular co-ordinates near the 
singularity and show its efficiency compared with the method mentioned above. 

K F Y  WORDS Stokes equations Boundary elements Quadrature Triangular co-ordinates 

INTRODUCTION 

During the last 15 years, boundary element methods have been established more and more for the 
numerical treatment of boundary value problems in many engineering fields.’ - These methods 
can be used if a fundamental solution for the differential equations is explicitly known. Then the 
solution of the boundary value problem considered in a certain domain can be represented by 
boundary layer potentials, whose unknown densities must be determined as the solution of 
integral equations over the domain boundary. Hence the ‘dimension’ of the problem is reduced. 

The most popular method to discretize the boundary integral equations is the collocation 
procedure: replacing the unknown densities by functions depending on a finite number M of 
unknowns, the corresponding integral equations are required to hold on M chosen boundary 
points only. The result is a system of linear algebraic equations with a non-sparse influence 
matrix. Its computation requires the numerical quadrature of integrals with singular integrands 
for each matrix element, which makes this part of the procedure costly. 

In the present paper we treat the interior Stokes boundary value problem with a collocation 
method developed in Reference 4. By a special choice of suitable quadrature formulae, we can 
improve the accuracy and, at the same time, reduce the costs (CPU) essentially. Although the 
methods developed here are presented only for concrete model problems in fluid dynamics (flow 
inside a unit ball), they can be easily applied to many other problems in various fields. 
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HYDRODYNAMICAL POTENTIAL THEORY 

Let us consider the Stokes equations 

- A v + V p = O  i n G  
V . v = O  in G ( 1 )  

v = b  on 2G 

in a bounded domain G c R 3  with a smooth boundary dG. These equations describe the motion 
of a viscous incompressible fluid contained in G: v: = ( I . ~ , u ~ , u ~ )  represents the velocity of a 
particle of fluid and p the pressure. For the given boundary value bEC(dG) we always assume the 
compatibility condition 

j8Gb(Y).n(Y)do, =o, (2) 

where n(y) denotes the outward unit normal in y ~ d G .  

potentials,'. which for x E G and Q, E C (  2 G )  are of the form 
For the solution v, p of ( 1 )  let us use the classical ansatz of hydrodynamical double-layer 

V(x):= D@(x):= JdG D(x, y)Q,(y)do,, 

P(x):= d@(x):= IaGd(x, y)-Q,(y)do,. 

Hcre the matrix D(x, y)  and the vector d(x, y) for X E G  and y ~ d G  are defined by 

(3) 

(4) 

where we set r:= x - y, n:= n(y)  for abbreviation and 1 1 for the Euclidean n ~ r m . ~ ' ~  Because V, P 
satisfy the first two identities in (l), it remains to determine the unknown density (b such that the 
boundary condition is fulfilled also. Owing to the jump relations of (3, if @EC(~C),  this leads to 
the boundary integral equation system 

($1 + D)Q, = b on SG, (7) 
which is a Fredholm system of the second Here we used I : =  (6 i j ) i . ,  = 2, j ,  with aij as the 
Kronecker symbol, and DQ, for the direct value of (3) on dG. 

It is known that there exists a solution Q,EC(~G)  of (7), but it is not uniquely de te r~nined .~ .~  
Because for numerical purposes a uniquely solvable system of integral equations is required, we 
replace (7) by 

( ' , I + D - N ) Q , = b  o n &  (8) 
with 
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It can be shown’ that (8) is uniquely solvable and that its solution @€C(dG)  satisfies (7) if (2) 
holds. 

Finally let us use a smoothing property of the double-layer potential (3) to reduce round-off 
errors in the computations later on. Due to Gauss’s 

X # G  

D ~ ( x ) : = ~ ~ ~ D ( x , y ) c d o ,  = { i c  if { xcdG , 

X E G  

which holds for any constant vector CE R3,  the system (8) is equivalent to 

( I + D * - N ) O = b  ondG 

with 

This system will be considered in the following. Its solution @ determines the solution of (1) by (3), 
(4), where again for numerical reasons 

V(X) = @(z) + D(x. Y ) (@(Y)  - @(z))do, (12) I. 
is used instead of (3) if X E G  is situated near its projection z ~ d G .  

A COLLOCATION METHOD 

For illustration let us restrict our considerations to the Stokes equations (1) in the unit ball 
B c R 3 .  Then we can represent its boundary S:= dB by one global co-ordinate system only. 
Setting S:= [o, $1 x [0,11. we use 

S-S 
P: -._ { x.- ( i l , i z ) - x  = (xl, xz, x3)  

with normed polar co-ordinates 

x1  := sin ( 2nX1 )cos (2niz), xz := sin (2nil)sin (2ai,), 

The Jacobian of this transformation is given by 

i(i):= 4n2sin(2n~, 1. 
By (13), the system (1  1 )  is transformed into the integral equations 

( ~ + i j - N ) * = b  on$, 

(13) 

x3 : = cos ( 2 n i  1 ). 

where here and in the following the overbar indicatcs f as the domain of definition. Thus for 
example in our case of the unit sphere, (9) leads to 
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For the discretization of (14) we use a collocation procedure from Reference 4 in a slightly 
modified version. Let 5 be divided into 2 N Z  squares Q of length h:=  1/2N, whose corner points 

Ch:= (X = ( ih , jh) l i  = 0, 1 ,  . . . , N ; j  = 0, 1,  . . . , 2 N }  (15) 
- 

define on s a collocation grid. With 
l + t  ( - l l t < O )  

w( t ) :=  l - t ( O < t l l )  , 
1 0  otherwise 

for every collocation point 2 E c h  we fix a bilinear B-spline wi: S -+ R by 

%A?):= MY, - i , ) / h ) w ( ( j ,  - % ) / h )  (16) 

and look for an approximate solution &h of (14) in the form 

Here the unknown coefficients a: = & , ( X ) g R 3  represent an approximation for the vectors &(X), 
XEC~.  and can be determined by the collocation equations 

( 1  + o* - g)&h = b on ch. (18) 

This is a system of linear algebraic equations containing a non-sparse matrix of 3 ( N  + 1X2N + 1) 
degrees of freedom. I t  can be solved on a computer if, as in the next section, suitable quadrature 
formulae for the remaining integrals are chosen. 

NUMERICAL INTEGRATION 

A common method for the numerical quadrature of the weakly singular integrals in (18) is the 
midpoint rule.4 Here we define on s an integration grid ih by 

Ti:= { = (( i - i ) h ,  ( j  - . l ) h )  I i = 1, 2, . . . , N ;  j = 1,2, . . . , 2N } 

and replace for every i E c h  

b * & h ( % )  = D(x, y ) ( & h ( y )  - &h(%))J(y)dy b 
by 

b : & h ( X ) : =  h2 D(2, y) (&h(y)  - &h(jZ))J(y). 
yei, 

Thus using (17) to obtain 

Q ) h ( y )  = a C_ at, 6 h ( % )  = a:, 
i d ,  

I i - y I S h  

after an analogue treatment of the integrals N & h ( x ) ,  the resulting algebraic system for the 
unknowns a: ( j iEch)  is ready for implementation. Because here the grids for collocation and 
integration are disjoint, it is not necessary to smooth- out the singularity. On the other hand, the 
computation of almost every element in the influence matrix requires the computation of the 
double-layer kernel (5) four times, so that this might be too expensive. 

We therefore propose another quadrature formula using triangular co-ordinates' together with 
the trapezoidal rule. Choosing the same grids for collocation and integration, let us first replace 
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the regular integrals N&h(ii) in (18) by 

N h & h ( X ) : =  @((x)(h2/4) &p(i)*@(i), 
i € C &  

where the trapezoidal weights pi€ { 1,2,4) in fee , ,  are given as usual: 

1 2 2 2 2 2 . . 2 1  
2 4 4 4 4 4 . . 4 2  
2 4 4 4 4 4 . . 4 2  
2 4 4 4 4 4 . . 4 2  
. . . . . . . . . .  
. . . . . . . . . .  
2 4 4 4 4 4 . . 4 2  
1 2 2 2 2 2 . . 2 1  

To approximate the weakly singular integrals 6* 6 h  (X), we use a transformation on triangular 
co-ordinates in all squares Q containing the singularity (x in one of its corner points. To do so, let 
us for short change the notation and consider the integral 

K:= r f k ( u ,  w)dwdu 
0 0  

with a function k having a weak singularity for u = w = 0. Due to 

K = r f ( k ( u ,  W )  + k(w, u))dwdu, 

K = ( l / h ) r r ( k ( s ,  s t /h )  + k(s t /h ,  s))sdsdt, 

K z ( h 2 / 4 ) ( k ( h ,  0) + k(0 ,  h )  + 2k(h, h ) )  

0 0  

with the help of the transformation u = s, w = s t /h  we obtain 

0 0  

which leads to 

if the trapezoidal rule is used. Thus for the remaining integrals D*&h( i i ) ,  iiech, our quadrature 
formula is chosen to be 

i€ C, 

with modified trapezoidal weights Pi,,e { 0, 1, . . . .  5 }  depending additionally on the position of 
the singularity X. For example, we use 

1 3 2 3 2 . . 2 1  1 2 2 2 . . 2 2 1  
2 4 0 4 4 . . 4 2  2 5 4 4 . . 4 5 2  
2 5 4 5 4 . . 4 2  0 4 4 4 . . 4 4 0  

2 5 4 4 . . 4 5 2  
2 4 4 4 . . 4 4 2  or 2 4 4 4 4 . . 4 2  

2 4 4 4 4 . . 4 2  2 4 4 4 . . 4 4 2  
1 2 2 2 2 . . 2 1  1 2 2 2 . . 2 2 1  

. . . . . . . . .  

. . . . . . . . .  . . . . . . . . .  
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where the weight 0 indicates the position of the singularity. Now also for the weakly singular 
integrals the grids for collocation and integration may coincide, which, in contrast to the 
midpoint rule, requires the computation of the double-layer kernel once per matrix element only. 
This is the main reason for the reduction of the CPU time to almost one-quarter (see examples 
below). Higher-order quadrature schemes, like the Gaussian for example, are even more costly 
than the midpoint rule and not so efficient in the present case, where linear splines are used for 
interpolation only. 

An approximate solution vh, p h  of the considered Stokes system can now be obtained from (3) 
((12) resp.) and (4) by using the same quadrature formulae as for the corresponding boundary 
integral equations. In the last section some test calculations are carried out to compare accuracy 
and computing time for both the midpoint and the modified trapezoidal schemes. 

NUMERICAL TEST 

The model problems considered here have no physical meaning, but, because their solutions are 
explicitly known, the accuracy of the quadrature schemes used can be easily assessed. Although 
the flow region is the unit ball B c R 3  with boundary S : =  dB, the computations are carried out 
without using any symmetry properties of the ball. The resulting influence matrix with 975 
degrees of freedom-we use the same spatial step size ( N  = 12) in all examples-is strongly 
diagonal-dominant owing to (lo), hence well conditioned, and has been inverted directly. For 
each component ( k  = 1,2,3) the mean relative error (YO) 

between the exact solution ut and the computed solution u: together with the computing time 
(CPU) are presented below. The results show the efficiency of the trapezoidal rule as expected. 

Example 1 

The functions v:  R 3  -+ R3,  p :  R 3  -+ R defined by 

x 3  - x2 

, p ( x ) : =  constant 

represent the solution of a Stokes model problem ( 1 )  in B with prescribed boundary values b:= v 
on S. In this case for the error E,(%) and the CPU percentage (midpoint rule z 100%) we obtain 
the following result: 

Rule E ,  E2 E3 CPU 

Midpoint 1 Q46 1.042 1.801 100% 
Trapezoidal 0.463 0462 1.300 23% 
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Example 2 

Consider a Leray-type solution (Reference 5, p. 138) defined by 

x: + 3 - 21x12 
v(x):= [ ::x; j, p ( x ) : =  - lox, +constant 

This solves (1) with prescribed boundary values b:= v on S. Here we obtain: 

Rule El E2 E ,  CPU 

Midpoint 2.059 7.237 2.076 100% 
Trapezoidal 0.254 2.05 1 1.175 27 yo 

in a fixed point 

Example 3 

lJsing the fundamental tensor of the Stokes system (Reference 5, p. 51 
z:= (zl, 0,O) outside the unit ball B (choose z1 > l!), we obtain for example 

J x  - ZJZ + (XI - z1)2 

( X l  - Z 1 b 2  , p ( x ) : =  2(x1 - z1 ) I x  - z ~ - 3 .  i (x1 - 21 1x3 i v(x):= - z l - 3  

These functions solve (1) in B with prescribed boundary values b:= v on S. For z1 = 1.1 we quote: 

Rule E, E2 E 3  CPU 

Midpoint 5.46 1 11.199 14.289 100% 
Trapezoidal 1.862 4.702 4.350 29% 
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